Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this work, drawing inspiration from the type of noise present in real hardware, we study the output distribution of random quantum circuits under practical nonunital noise sources with constant noise rates. We show that even in the presence of unital sources such as the depolarizing channel, the distribution, under the combined noise channel, never resembles a maximally entropic distribution at any depth. To show this, we prove that the output distribution of such circuits never anticoncentrates—meaning that it is never too “flat”—regardless of the depth of the circuit. This is in stark contrast to the behavior of noiseless random quantum circuits or those with only unital noise, both of which anticoncentrate at sufficiently large depths. As a consequence, our results shows that the complexity of random-circuit sampling under realistic noise is still an open question, since anticoncentration is a critical property exploited by both state-of-the-art classical hardness and easiness results. Published by the American Physical Society2024more » « less
-
We generalize the notion of quantum state designs to infinite-dimensional spaces. We first prove that, under the definition of continuous-variable (CV) state t-designs from [Blume-Kohout et al., Commun.Math. Phys. 326, 755 (2014)], no state designs exist for t ≥ 2. Similarly, we prove that no CV unitary t-designs exist for t ≥ 2. We propose an alternative definition for CV state designs, which we call rigged t-designs, and provide explicit constructions for t ¼ 2. As an application of rigged designs, we develop a design-based shadow-tomography protocol for CV states. Using energy-constrained versions of rigged designs, we define an average fidelity for CV quantum channels and relate this fidelity to the CV entanglement fidelity. As an additional result of independent interest, we establish a connection between torus 2-designs and complete sets of mutually unbiased bases.more » « less
An official website of the United States government
